Last edited by Shakarisar
Wednesday, May 13, 2020 | History

2 edition of Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type found in the catalog.

Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type

by Yu Mitropolskii

  • 178 Want to read
  • 21 Currently reading

Published by Springer Netherlands in Dordrecht .
Written in English

    Subjects:
  • Mechanics,
  • Mathematics,
  • Differential equations, partial

  • About the Edition

    This volume is devoted to the further development of the asymptotic theory for analysing solutions of a wide range of nonlinear periodic boundary value problems. It suggests a systematic approach to constructing asymptotic methods for solving wave equations, a particular ordinary differential equation of the second order, hyperbolic differential equations and partial differential equations with small parameters. Audience: This book will be of interest to researchers and postgraduate students whose work involves partial differential equations, mathematical physics, or approximations and expansions.

    Edition Notes

    Statementby Yu. Mitropolskii, G. Khoma, M. Gromyak
    SeriesMathematics and Its Applications -- 402, Mathematics and Its Applications -- 402
    ContributionsKhoma, G., Gromyak, M.
    Classifications
    LC ClassificationsQA370-380
    The Physical Object
    Format[electronic resource] /
    Pagination1 online resource (x, 214 p.)
    Number of Pages214
    ID Numbers
    Open LibraryOL27018720M
    ISBN 109401064261, 9401157529
    ISBN 109789401064262, 9789401157520
    OCLC/WorldCa851384107

    ON THE ASYMPTOTIC SOLUTIONS OF DIFFERENTIAL EQUATIONS, WITH AN APPLICATION TO THE BESSEL FUNCTIONS OF LARGE COMPLEX ORDER* BY RUDOLPH E. LANGER 1. Introduction. The theory of asymptotic formulas for the solutions of an ordinary differential equation /'(at) + p(x)y'(x) + {p24>2(x) + q(x)}y(x) = 0. We consider the asymptotic behavior of the solution of quasilinear hyperbolic equation with linear dampingV tt-a(V x) x +αV t =0,(x,t)∈R×(0,∞), ((*))subsequent to [K. Nishihara,J. Differential Equations(), ]. In that article, the system with dampingv t-u x =0,u t +p(v) x =-αu,p′(v)0) was treated, and the convergence rates to the diffusion wave by [L. Hsiao and Cited by:

    Lecture 3: Asymptotic Methods for the Reduced Wave Equation Joseph B. Keller 1 The Reduced Wave Equation We are interested in looking at the asymptotic behavior of solutions to the reduced wave equation (5) as k → ∞. To explore this, we suppose z(X,k) has an asymptotic expansion The four equations given by (18) and (19) are known as. High-order Asymptotic-Preserving schemes for the Boltzmann equation and related problems Lorenzo Pareschi Department of Mathematics & Computer Science University of Ferrara, Italy hyperbolic balance laws, kinetic equations, convection{di usion .

    NLS and Boussinesq equations (although that for the NLS will be only briefly mentioned). We conclude this type of problem by discussing the propagation of ring waves on a flow with some prescribe flow (i.e. non-zero vorticity) in a given direction. To complete this introduction to the way in which we can use (formal) asymptotic. Other Files to Download: [PDF] Asymptotic Methods For Investigating Quasiwave Equations Of Hyperbolic [PDF] Recent Advances In Hallux Rigidus Surgery, An Issue Of Clinics In Podiatric Medicine And Surgery, [PDF] The Goodbye [PDF] Key To The British Species Of Freshwater [PDF] Video Production With Adobe /5().


Share this book
You might also like
H.R. 10397

H.R. 10397

egoist

egoist

Paleokarst

Paleokarst

The new £10 note & Charles Dickens

The new £10 note & Charles Dickens

Tales from the Brothers Grimm

Tales from the Brothers Grimm

Wind speeds from underwater acoustic measurements during the Canadian Atlantic storms program

Wind speeds from underwater acoustic measurements during the Canadian Atlantic storms program

Television and radio line distribution.

Television and radio line distribution.

Preventive maintenance workshop

Preventive maintenance workshop

Markets for selected medicinal plants and their derivatives

Markets for selected medicinal plants and their derivatives

Handlist of editions of the poem Syphilis

Handlist of editions of the poem Syphilis

Matthew Looney in the Outback

Matthew Looney in the Outback

A Handbook of Community Gardening

A Handbook of Community Gardening

Firebreak

Firebreak

White snow, bright snow

White snow, bright snow

Australia and the far east

Australia and the far east

James H. Combs family 1822

James H. Combs family 1822

Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type by Yu Mitropolskii Download PDF EPUB FB2

Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type. Authors: Mitropolsky, Yuri A., Khoma, G., Gromyak, M.

Free Preview. Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type. Authors Hyperbolic Systems with Fast and Slow Variables and Asymptotic Methods for Solving Them. Mitropolskii, G. Khoma, M. Gromyak.

Pages Asymptotic Methods for the Second Order Partial Differential Equations of Hyperbolic Type. Mitropolskii, G. Get this from a library. Asymptotic methods for investigating quasiwave equations of hyperbolic type.

[I︠U︡ A Mitropolʹskiĭ; G P Khoma; M I Gromi︠a︡k]. Get this from a library. Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type. [Yu Mitropolskii; G Khoma; M Gromyak] -- This volume is devoted to the further development of the asymptotic theory for analysing solutions of a wide range of nonlinear periodic boundary value problems.

It suggests a systematic approach to. asymptotic methods for investigating quasiwave equations of hyperbolic type, you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products.

Mitropolskii Y., Khoma G., Gromyak M. () Hyperbolic Systems with Fast and Slow Variables and Asymptotic Methods for Solving Them. In: Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic : Yu.

Mitropolskii, G. Khoma, M. Gromyak. Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type Book The theory of partial differential equations is a wide and rapidly developing branch of contemporary : Donal O'regan. The book goes on to present more advanced material from the author's own research.

Topics range from radiation conditions and the principle of limiting absorption for general exterior problems, to complete asymptotic expansion of spectral function of equations over all of by: Asymptotic integration of singularly perturbed systems of hyperbolic-type partial differential equations with degeneration Article in Ukrainian Mathematical Journal 63(5) October with 9.

BOOK REVIEWS MITROPOLSKII, YU.; KHOMA, G.; GROMYAK, M. – Asymptotic Meth-ods for Investigating Quasiwave Equations of Hyperbolic Type, Mathematics and Its Applications, vol. Kluwer Academic Publishers, Dordrecht-Boston-London,x+pp., ISBN The theory of partial differential equations is a wide and rapidly devel.

Some Aspects of Uniqueness Theory of Entire and Meromorphic Functions (Ph.D. thesis) Asymptotic Methods for Investigating Quasiwave Equations Author: Bikash Chakraborty.

We consider the Cauchy problem for the damped nonlinear hyperbolic equation in n -dimensional space. Under small condition on the initial value, the global existence and asymptotic behavior of the solution in the corresponding Sobolev spaces are obtained by Cited by: 4.

Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type Yuri A Mitropolsky, G Khoma, M Gromyak The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in.

Yurii Alekseevich Mitropolskii's name is often transliterated as Mitropolsky or Mytropolsky and occasionally as Mytropolskiy or Mitropolskiy. His father, Aleksei Savvich Mitropolskii, had attended St Petersburg University but was called up for military duty in and Asymptotic methods for investigating quasiwave equations of hyperbolic.

Using methods introduced by S. Schochet inJ. Differential Equations(), –, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system Cited by: Addeddate Documentid Identifier nasa_techdoc_ Identifier-ark ark://t6sx70k5k Ocr ABBYY FineReader Ppi.

Second, under some additional assumptions on the nonlinear function a(v) and on the initial data (V 0 (x), V 1 (x)), when δ 0 =0, δ 1 ≠0, we succeed in proving that φ(t, x) is still an asymptotic profile of V(t, x) and this answers partially the open problem left by K. by: Asymptotic Methods in Equations of Mathematical Physics - CRC Press Book Asymptotic Methods in Equations of Mathematical Physics 1st Edition.

B Vainberg. Hardback $ CRC Press Published Febru Reference - Pages ISBN. dom inputs. The few existing work on uncertainty quanti cation of hyperbolic and transport equations ([13, 8, 14, 6, 30]) focused on e cient methods in the standard stochastic setting and did not study the asymptotic behavior of these methods.

Con-sequently, those methods do not possess AP property. Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations Jingwei Hu, Shi Jinyand Qin Liz J Abstract Hyperbolic and kinetic equations often possess small spatial and temporal scales that lead to various asymptotic limits.

Numerical approximation of these equations is chal. Scattering for quasilinear hyperbolic equations of Kirchhoff type with perturbation Yamazaki, Taeko, Osaka Journal of Mathematics, ; Finite-time degeneration of hyperbolicity without blowup for quasilinear wave equations Speck, Jared, Analysis & PDE, ; Singular limit of some quasilinear wave equations with damping terms Matsuyama, Tokio, Advances in .() Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay.

Communications on Pure and Applied Analysis() Exponential growth for wave equation with fractional boundary dissipation and boundary source by: download natural law in court a history of legal theory in practice armies of files two turrets for FREE!

)Vindication discrepancies of Usenet tensions! level: EBOOKEE contains a time world of objectives on the hub(major Mediafire Rapidshare) and is .